Lecture 32

Andrei Antonenko

April 30, 2003

1 Powers of diagonalizable matrices

In this section we will give 2 algorithms of computing the m -th power of a matrix.

1.1 Method 1

First method is based on diagonalization. Suppose A is a given matrix, and we want to find its m-th power, i.e. we want to get a formula for A^m . We will suppose that the matrix A is diagonalizable. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of A, and e_1, e_2, \ldots, e_n be its linearly independent eigenvectors. Then we know, that there exists a matrix C , whose columns are eigenvectors, and a diagonal matrix

$$
D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}
$$

such that

$$
D = C^{-1}AC
$$
, or $A = CDC^{-1}$.

Now we can see that

$$
Am = (CDC-1)m
$$

=
$$
\underbrace{(CDC^{-1})(CDC^{-1})\cdots(CDC^{-1})}_{m}
$$

=
$$
CD(C-1C)D(C-1...C)DC-1
$$

=
$$
CDID...IDC-1
$$

=
$$
CDmC-1
$$
.

But

$$
D^m = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}^m = \begin{pmatrix} \lambda_1^m & 0 & \dots & 0 \\ 0 & \lambda_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^m \end{pmatrix}
$$

So,

$$
Am = C \begin{pmatrix} \lambda_1^m & 0 & \dots & 0 \\ 0 & \lambda_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^m \end{pmatrix} C^{-1}.
$$

Example 1.1. Let's find the formula for $\left($ $3 -2$ $\begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}^m$. The characteristic polynomial is

$$
p_A(\lambda) = \lambda^2 - 3\lambda + 2.
$$

So, the eigenvalues are $\lambda_1 = 1, \lambda_2 = 2$. Let's compute eigenvectors.

 $\lambda_1 = 1$. After subtraction $\lambda_1 = 1$ from the diagonal, we have $\Big($ $2 -2$ 1 −1 , so the eigenvector is $(1, 1).$

!
}

!
}

 $\lambda_2 = 2$. After subtraction $\lambda_2 = 2$ from the diagonal, we have $\Big($ $1 -2$ $1 -2$, so the eigenvector is $(2, 1)$.

Thus,

$$
D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}.
$$

Now we get

$$
A^{m} = CD^{m}C^{-1}
$$

= $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}^{m} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$
= $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{m} \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$
= $\begin{pmatrix} 1 & 2^{m+1} \\ 1 & 2^{m} \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$
= $\begin{pmatrix} -1 + 2^{m+1} & 2 - 2^{m+1} \\ -1 + 2^{m} & 2 - 2^{m} \end{pmatrix}.$

1.2 Method 2

Let A be an $n \times n$ -matrix. Suppose it has n different eigenvalues. Then the algorithm goes as following. Let's write the approximation equation:

$$
a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \dots + a_1 = t^m
$$

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be different eigenvalues of A. Now let's substitute λ_i 's into the approximation equation instead of t. We will have n different equations with n variables. So, we can find $a_{n-1}, a_{n-2}, \ldots, a_0$. Now, we will have that

$$
A^{m} = a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \cdots + a_1I.
$$

Let's note that this formula involves $n-1$ different powers of a matrix.

Example 1.2. Let again
$$
A = \begin{pmatrix} 3 & -2 \ 1 & 0 \end{pmatrix}
$$
. The approximation equation is
at + b = t^m.

For A we already computed eigenvalues: $\lambda_1 = 1, \lambda_2 = 2$. Substituting them, we have:

$$
\begin{cases}\n a & + b = 1 \\
2a + b = 2^m\n\end{cases}
$$

Multiplying the first equation by 2 and subtracting from the second one, we get $-b = 2^m - 2$, so $b = 2 - 2^m$, and $a = 1 - b = 2^m - 1$. So,

$$
A^{m} = (2^{m} - 1) \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} + (2 - 2^{m}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^{m+1} - 1 & 2 - 2^{m+1} \\ 2^{m} - 1 & 2 - 2^{m} \end{pmatrix}
$$

So, this method, of course, gave the same result as the first one.

2 Powers of nondiagonalizable matrices

We'll consider 2×2 -matrices.

In the last chapter we considered a method of computing the power of the diagonalizable matrix. Now we will generalize method 2 from the previous lecture to nondiagonalizable matrices. We used an approximation equation,

$$
at + b = t^m
$$

and substituted different eigenvalues to it to determine the coefficients. If we have just one eigenvalue, we will take the derivative of the approximation equation:

$$
a = mt^{m-1},
$$

and substitute eigenvalue to it. We'll demonstrate this approach in the following example.

Example 2.1. Let
$$
A = \begin{pmatrix} 2 & -4 \ 1 & 6 \end{pmatrix}
$$
. Its eigenvalue is equal to 4. The approximation equation is

 $at + b = t^m$,

and substituting $t = 4$, we get

$$
4a + b = 4^m.
$$

Now, taking the derivative of this equation we have

$$
a = mt^{m-1},
$$

and substituting $t = 4$, we get

$$
a = m4^{m-1}.
$$

So, $a = m4^{m-1}$, and $b = 4^m - m4^m$. So, the formula for the m--th power of A is

$$
A^{m} = (m4^{m-1})A + (4^{m} - m4^{m})I
$$

=
$$
\begin{pmatrix} 2m4^{m-1} + 4^{m} - m4^{m} & -m4^{m} \\ m4^{m-1} & 6m4^{m-1} + 4^{m} - m4^{m} \end{pmatrix}
$$

3 Square roots of diagonalizable matrices

In the previous chapters we saw how to compute m -th power of a diagonalizable matrix using eigenvectors and eigenvalues. Now we will consider a problem of finding a square root of a matrix. Suppose the matrix \vec{A} is diagonalizable, i.e. it has \vec{n} linearly independent eigenvectors e_1, e_2, \ldots, e_n with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Now if C is a matrix, where e_i 's are written as columns, and D is a diagonal matrix with λ_i 's over diagonal, then

$$
A = CDC^{-1}.
$$

Let all λ_i 's be nonnegative numbers. Now let's consider a matrix \sqrt{D} which has either positive or negative square roots of λ_i 's on diagonal:

$$
\sqrt{D} = \begin{pmatrix} \pm \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \pm \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \pm \sqrt{\lambda_n} \end{pmatrix}
$$

We can easily check that for such defined \sqrt{D} , we have $(\sqrt{D})^2 = D$. So we see that a square root of a matrix A can be obtained from D and C by the following formula:

$$
C\sqrt{D}C^{-1}.
$$

Let's denote that there are more than one square root of a matrix — and all of them can be bet s denote that there are more than one square root of the obtained by choosing different signs before $\sqrt{\lambda_i}$'s in D^{-1} .

Example 3.1. Let's compute a square root of $A =$ \overline{a} 7 2 $\begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix}$. The characteristic polynomial is $p_A(\lambda) = \lambda^2 - 13\lambda + 36$, so eigenvalues are $\lambda_1 = 4, \lambda_2 = 9$. Eigenvector, corresponding to $\lambda_1 = 4$ is determined from equation $3x_1 + 2x_2 = 0$, so it can be $(2, -3)$. Eigenvector, corresponding to $\lambda_2 = 9$ is determined from equation $-2x_1 + 2x_2 = 0$, so it can be $(1, 1)$. So,

$$
D = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix}, \quad C^{-1} = \frac{1}{5} \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}.
$$

Now,

$$
\sqrt{D} = \begin{pmatrix} \pm 2 & 0 \\ 0 & \pm 3 \end{pmatrix}.
$$

So, for positive signs in D we have:

$$
\sqrt{A} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}
$$

$$
= \frac{1}{5} \begin{pmatrix} 4 & 3 \\ -6 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}
$$

$$
= \frac{1}{5} \begin{pmatrix} 13 & 2 \\ 3 & 12 \end{pmatrix}.
$$

In the same way we can get other square roots (changing signs in D).

If A has negative eigenvalues, then this algorithm is not applicable, but in this case there are no square roots of A.